Continuous dynamic programming approach to inequalities, II
نویسندگان
چکیده
منابع مشابه
A Continuous Approach to Genetic Programming
Differential Evolution (DE) is an evolutionary heuristic for continuous optimization problems. In DE, solutions are coded as vectors of floats that evolve by crossover with a combination of best and random individuals from the current generation. Experiments to apply DE to automatic programming were made recently by Veenhuis, coding full program trees as vectors of floats (Tree Based Differenti...
متن کاملOptimization II: Dynamic Programming
In the last chapter, we saw that greedy algorithms are efficient solutions to certain optimization problems. However, there are optimization problems for which no greedy algorithm exists. In this chapter, we will examine a more general technique, known as dynamic programming, for solving optimization problems. Dynamic programming is a technique of implementing a top-down solution using bottom-u...
متن کاملApproximate Dynamic Programming via Iterated Bellman Inequalities
In this paper we introduce new methods for finding functions that lower bound the value function of a stochastic control problem, using an iterated form of the Bellman inequality. Our method is based on solving linear or semidefinite programs, and produces both a bound on the optimal objective, as well as a suboptimal policy that appears to works very well. These results extend and improve boun...
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1986
ISSN: 0022-247X
DOI: 10.1016/0022-247x(86)90263-5